

Ithaca, New York

AE Senior Thesis April 14, 2014

Angela Mincemoyer

Structural Option

Advisor | Dr. Boothby

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Ithaca, New York

AE Senior Thesis April 14, 2014

Angela Mincemoyer

Structural Option

Advisor | Dr. Boothby

Introduction

- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Owner | Ithaca College Architect | Holt Architects Structural Engineer | Ryan-Biggs Associates

58,200 GSF 4 Stories Substantial Completion | March 2010

Introduction

Introduction

- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Composite steel floor 3" x 20 gauge composite metal deck 6" concrete slab Wide Flange Beams, girder, columns Irregular Layout Geometry, cantilevers

Existing Gravity System

Introduction

- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

North-South East-West Seismic Design Category A Wind Controlled Design

Existing Lateral System

Concentrically braced structural steel frames

Introduction

- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Pratt Trusses HSS 3.5" pipe Double Cantilever

Existing Bridge System

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Scenario | Project Schedule is no longer critical

Proposal One way concrete slab system with pan joists and girders

- Beneficial for cantilevers
- Accommodates varying spans & geometries
- Thinner slab
- Minimize architectural impact

Scenario | Learning opportunity

Proposal | Two different redesign options will be considered

- Reflection of New York's historic covered bridges
- Reflect on original name of the building ("The Gateway Building")

Building

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Scenario | Project Schedule is no longer critical

Proposal One way concrete slab system with pan joists and girders

- Beneficial for cantilevers
- Accommodates varying spans & geometries
- Thinner slab
- Minimize architectural impact

Scenario | Learning opportunity

Proposal | Two different redesign options will be considered

- Reflection of New York's historic covered bridges
- Reflect on original name of the building ("The Gateway Building")

Building

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Proposal One way concrete slab system with pan joists and girders

Goals Design a one way concrete slab system while:

- Minimizing floor system depth
- Minimizing architectural impact

Proposal Two different redesign options will be considered

Goals After considering two redesign options: Determine which option to move forward with Design one side truss of the

bridge

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Proposal One way concrete slab system with pan joists and girders

Goals Design a one way concrete slab system while:

- Minimizing floor system depth
- Minimizing architectural impact

Proposal Two different redesign options will be considered

Goals After considering two redesign options: Determine which option to move forward with Design one side truss of the

bridge

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

- **CRSI** Manual
- 2 worst case spans considered
- 30" forms with 6" rib @ 36" o.c.
- 20'' rib depth + 4.5'' slab = 24.5'' system depth
- f'c = 4,000 psi
- fy = 60 ksi

Pan Joist System

Same joist size and spacing used throughout

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

-2'-6"-1

 $2' - 0\frac{1}{2}"$

Column Line 13

Column Line 2

- Designed members indicated
 - Chosen due to: Long spans,
- Designed using spBeam
 - Strength requirements
 - Deflections checked per ACI 318-11 Table 9.5b

Column Line 8

 $2' - 0\frac{1}{2}"$

large tributary widths, high loadings

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

- Designed using spColumn
- Both axial loads from above & moments were applied
- Square section chosen
 - Ease of construction
 - Aid in future lateral system design
- All column sizes were increased to 18"x 18" for constructability

Columns

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

- Columns & girders were removed from original design
- Floor system depth decreased by 5-5/8"
 - l
- Larger floor-to-ceiling height

Summary

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

- Current lateral system
 - Concentrically braced structural steel frames
 - No longer the best option
- Gravity system may double as the lateral system
- Concrete moment frames in North-South and East-West directions
- 4 concrete moment frames were considered in each direction

Lateral System Introduction

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

- Both wind and seismic forces were calculated per ASCE7-10
 - Wind controlled
- Using spColumn, 18"x18" columns were designed
 - Biaxial bending was considered
- Worst case girder and joist were checked for beam-column interaction
 - Found to be adequate

Lateral System Analysis

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Analysis was done using 4 frames in both directions

- By adding frames the system will surely be adequate
- The gravity system of the building doubles as the lateral system

Summary

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

- Sketches were produced to determine which inspiration would be used in the redesign
 - The covered bridge option was chosen
- Box truss design
- Move supports out to open up the space
- Warren Truss

Bridge Introduction

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

- trusses
- layout

Only gravity loads were considered for the side

Panel point loads were determined based on

Controlling Load Combinations: ■ 1.2 D + 1.6 L + 0.5 S

■ 1.2 D + 1.6 S + L

Loads

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - **Bridge Truss**
- Architectural Breadth
- Lighting Breadth
- Conclusion

- Loading all panel points
 - Produced worst case force in top chord, bottom chord, and far left diagonal
- Use of geometry to determine member forces
- forces
 - Indexing Method is an accurate method of analysis

Member Force Determination

Indexing Method

Method of Joints to verify Indexing Method

1.2 D + 1.6 L + 0.5 S

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Steel Manual Tables Table 4-4 for top chord and diagonal compression members

Table 5-5 for bottom chord tension member

Top Chord: HSS7x7x¹/₄ Bottom Chord: HSS7x7x¹/₄ Diagonals: HSS4x4x¹/₂

Member Design

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

The Newfield Bridge

The Golden Gate Bridge

garde

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

The Newfield Bridge

The Golden Gate Bridge

garde

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

The Newfield Bridge

The Golden Gate Bridge

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

The Newfield Bridge

Chosen Inspiration

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Redesign

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Façade Inspiration

Redesign

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Façade Comparison

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Façade Comparison

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Lighting Breadth

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

- bridge system while: inches option
- **Goals** Design a one way concrete slab system while: Minimizing floor system depth Minimize architectural impact **Conclusion** Designed a one way concrete slab Floor system depth decreased by 5-5/8
- - Decreased number of columns and girders Gravity system adequate for Lateral Loads

Building

Bridge

Goals After considering two redesign options: Determine which option to move forward with Design one side truss of the

Conclusion Considered two redesign options: Chose the covered bridge

> Designed side truss using the Indexing Method

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

- Minimizing floor system depth
- Minimize architectural impact
- - Floor system depth decreased by 5-5/8 inches
- - Decreased number of columns and girders

Goals Design a one way concrete slab system while:

Conclusion Designed a one way concrete slab system while:

Gravity system adequate for Lateral Loads

Building

Goals After considering two redesign options:

- bridge
- **Conclusion** Considered two redesign options:
 - option

Determine which option to move forward with

Design one side truss of the

Chose the covered bridge

Designed side truss using the Indexing Method

- Introduction
- Proposal
- Structural Depth
 - Gravity System
 - Lateral System
 - Bridge Truss
- Architectural Breadth
- Lighting Breadth
- Conclusion

Ryan-Biggs Associates Holt Architects

Entire AE Faculty Dr. Thomas Boothby Professor M. Kevin Parfitt

Fellow AE Students

Family and Friends

Acknowledgements

Angela Mincemoyer

Structural Option

Questions

AE Senior Thesis April 14, 2014

Advisor | Dr. Boothby